
Asynchronous Brain Computer Interface using Hidden Semi-Markov
Models

Gareth Oliver1, Peter Sunehag1 and Tom Gedeon1

Abstract— Ideal Brain Computer Interfaces need to perform
asynchronously and at real time. We propose Hidden Semi-
Markov Models(HSMM) to better segment and classify EEG
data. The proposed HSMM method was tested against a simple
windowed method on standard datasets. We found that our
HSMM outperformed the simple windowed method. Further-
more, due to the computational demands of the algorithm,
we adapted the HSMM algorithm to an online setting and
demonstrate that this faster version of the algorithm can run
in real time.

I. INTRODUCTION

Brain Computer Interfaces(BCI) make use of devices such
as EEGs to read a person’s brainwaves and classify them.
This allows the BCI to be used as a control device. BCI has
many interesting applications, both as a hands-free control
device as well as being one of the few ways people suffering
from full body paralysis can communicate [1].

The majority of BCI research to date has focused on
synchronous classification, where segments with known
boundaries are classified. Ideally a BCI would operate asyn-
chronously, requiring the data to be segmented as well
as classified. Most commonly this is done by selecting a
window around each time step to perform the classification.
Hidden Semi-Markov Models have been shown to be highly
effective at segmentation of data in a variety of different
fields, such as movement tasks[2] and functional MRI se-
quence analysis [3]. HSMM makes use of variable duration
windows to allow for more accurate segmentation of time-
series data.

This paper will first introduce the preprocessing and
feature extraction methods that are to be used, as well as
the HSMM and the Support Vector Machine classifiers. A
method for applying the HSMM algorithm online will also
be discussed. We compare the proposed HSMM method with
a simple window based method. Finally the results indicating
the speed issues with the HSMM will be discussed.

II. PREPROCESSING AND FEATURE EXTRACTION

The most common forms of preprocessing are Frequency
Filtering and Channel Selection. Frequency Filtering is used
to isolate frequency bands within which responses occur.
It has been shown that different actions cause response in
particular frequency bands. For motor based BCI, responses
are known to occur in the α (8-12 Hz)and β (13-30 Hz)
rhythms [4]. Additionally the θ rhythm (1-7 Hz) has been

1G. Oliver, P. Sunehag and T. Gedeon are with the Research
School of Computer Science at the Australian National University.
gareth.oliver at anu.edu.au

used successfully. The commonly used Butterworth filter was
used to perform the band-pass filtering in this paper [5].

Channel selection is another important preprocessing step.
This eliminates electrode channels that are not relevant to the
separation of the classes, thus reducing the dimensionality
and noise within the data. As channel selection was not the
focus of this paper this was performed manually using expert
knowledge.

A. Feature Extraction

Common Spatial Subspace Decomposition (CSSD)[8] and
Common Spatial Patterns (CSP)[7] are among the most
popular feature extraction techniques for motor imagery BCI.
CSSD seeks to reduce the dimensionality of the data by
selecting the channels that maximise the variance between
the classes. This is done through the simultaneous diagonal-
isation of co-variance matrices. The algorithm used can be
found in [8]. For completeness sake the algorithm used is
given briefly below.

Ra = Xa.X
T
a

Rb = Xb.X
T
b

R = Ra +Rb

= U0.Σ.U
T
0

P = Σ−1/2.UT0

Sa = P.Ra.P
T

Sb = P.Rb.P
T

First the co-variance matrix of each class, Ra and Rb,
are estimated from the training data. The eigenvalues, Σ and
eigenvectors, U0 of R are then found. These are used to
obtain the whitening matrix P. The co-variance matrices are
then whitened to give Sa and Sb. After ranking the vectors
in descending order by eigenvalue, the first m eigenvectors
are selected from Sa and combined to form Ua. Similarly
the first m eigenvectors of Sb are selected and combined to
form Ub.

SFa = UTa .P

SFb = UTb .P

Ua and Ub are used to construct the corresponding spatial
filter matrices SFa and SFb. The log of the variance of each
trial is then selected as a feature. This gives a feature vector
containing m values for each class, as given below for some
input X.

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

2728978-1-4577-1787-1/12/$26.00 ©2012 IEEE

features = (var(SF.X))

III. CLASSIFICATION

In this section the classifiers for both the asynchronous and
synchronous problems are presented. To allow synchronous
testing to be transferred to the asynchronous problem we
extend the synchronous support vector machine classifier to a
hidden semi-markov model classifier. This makes parameter
exploration much easier and quicker to perform.

A. Support Vector Machine

Support Vector Machines (SVMs) are among the most
popular, and successful classifiers. They have been used to
great success in the classification of motor tasks[9]. SVMs
seek to maximise a decision boundary between the classes
being classified. For simplicity a linear kernel was used.
The decision boundary problem can be formalised as finding
a discriminant function F(x,y) so that the prediction ŷ(x)
satisfies

ŷ(x) = arg max
y∈C

F (x, y)

where

F (x, y) = 〈φ(x, y), w〉

φ is the feature map and C is the set of classes. Given a
set of n training pairs (xi, yi). A SVM choses a w so as to
minimise

λ
‖w‖2

2
+

1

n

n∑
i=1

max
y′∈C

〈
φ(xi, y′)− φ(xi, yi), w

〉
+ δyi,y′ (1)

Where λ > 0 is a regularisation constant. A solution to this
convex optimisation problem can be found by performing
stochastic gradient descent. From equation 1 is follows that
the weight update law is

wt+1 = wt − ρt(λwt + φ(xi, y∗(xi, yi))− φ(xi, yi))

where ρ is the learning rate. Convergence can be guar-
anteed by using ρt = τ

1+t as it satisfies the robbins-monro
conditions required for convergence[13].

B. Windowed Segmentation

Windows are the standard method used for BCI segmen-
tation [10]. It has the advantage of being fast, and easy
to implement. It was used as a benchmark to evaluate the
effectiveness of the HSMM method. The Windowed method
works by taking a fixed window around each time step. It
uses this window to extract features and assign a class to
that timestep.

Inputs

obs[m] - observed data
W - model parameters for each state
S[m+1,c] - Matrices for storing dynamic solution
J[m+1,c] - stores previous class
L[m+1,c] - stores previous time point

Algorithm

1: S[0, :]← 0
2: J [0, :]← 0
3: L[0, :]← 0
4: for (i = 1,i < m+ 1, i++) do
5: for (c : classes) do
6: gb,c ← φ(Φ(obs[i− b : i]), wc)
7: L[i, c], J [i, c] ← argmaxb,pc(gb,c + S[i −

b, pc])
8: S[i, c]← maxb,pc(gb + S[i− b, pc])
9: end for

10: end for
11: j ← argmax(S[m, :])
12: i← m
13: seq ← []
14: while (i != 0) do
15: for (k=0, k < i - L[i,j], k++) do
16: seq.append(j)
17: end for
18: j, i← J [i, j], L[i, j]
19: end while
20: return reverse(seq)

Fig. 1. Viterbi Algorithm

C. Hidden Semi-Markov Model

The Hidden Semi-Markov Model(HSMM) extends Hidden
Markov Models(HMM) in the sense that HSMM assigns a
single label for a series of observations, rather than for a
single observation. We define all possible labels that can be
transitioned to from a segment (ni, li) as

(ni+1, li+1) ∈ S(ni, li) = {(n, l)|l ∈ C n− ni ∈ T (l)}
(2)

where C is the possible class labels and T(l) is the possible
durations for a given class. We also define Y(x) as the set of
possible labeled segmentations that abide by the constraints
of equation 2. The goal is now to find some descriminant
function F(x,y) so that the maximiser of F(x,y) provides a
good segmentation and classification of the data. We use a
linear discriminant function

F (x, y) = 〈Φ(x, y), w〉

2729

Inputs
X - Data
N,L- List of Segmentations
i - Current Segment
m - Maximum Segment Duration

Algorithm

1: No,Lo← HSMM(X[n(i−1) : ni) +m])
2: N ← N\Ni ∪No0 ∪No1
3: L← L\Li ∪ Lo0 ∪ Lo1
4: i+ +
5: return N,L, i

Fig. 2. Online HSMM

where

Φ(x, y) =
∑
ni∈Y

φ(x, ni−1, ni, li)

where Φ is the joint feature map that breaks down into
a sum over the features of each segment. For a particular
segment, this setting becomes the same as that which was
discussed in section III-A. We perform parameter estimation
for the HSMM by performing the described SVM training
on a dataset that consists of all individual segments and their
labels. For maximising the discriminant function the dynamic
programming solution Viterbi algorithm was used [2], given
below.

D. Online HSMM

Performing the above algorithm on a large segment of data
would be very slow, and impossible to do in an online setting.
However, if we make the assumption that the segmentation
of the current segment (ni, li) will be unaffected by segmen-
tation of data after segment (n(i+1), l(i+1)) then the result of
(ni, li) can be fixed after the segmentation (n(i+1), l(i+1)) is
found. This allows the HSMM algorithm mentioned above
to be used in an online setting, and reduce the length of each
continuous segment the HSMM is performed on. A simple
way of performing this is as follows in Fig. 2.

Here m is the largest duration in T, and HSMM is
the previously mentioned HSMM algorithm, returning the
segmentation and classification of the data. A minimum of
two segments is guaranteed due to m. This can be repeated
until all of the data is classified.

Preprocessing Feature Extraction
Filter 1-7 Hz
Filter 8-12 Hz CSSD, m=3

Filter 14-28 Hz

TABLE I
PREPROCESSING AND FEATURE EXTRACTION

IVb I a I b I c I d I e I f I g
Windowed 90 73 69 74 78 79 72 75

HSMM 94 77 73 78 82 83 73 80
OHSMM 94 77 71 76 81 82 72 78

TABLE II
ASYNCHRONOUS ACCURACY (%)

IV. EXPERIMENTS

Parameter exploration for both preprocessing and feature
extraction methods were first carried out in a synchronous
setting using the SVM. Due to the structure of the HSMM it
is reasonable to assume that the parameters explored in the
SVM should work well for the SVM. Table:I gives the pre-
processing and feature extraction used for both asynchronous
methods.

The asynchronous tests were then carried out on several
datasets. The first is an artificial segmentation problem
created from the training data of BCI competition III dataset
IVb[11]. The second dataset used was BCI competition IV
dataset I[12]. It consists of 4 subjects and 3 artificial datasets
(c, d and e). The relax segments were removed to give a
two class asynchronous segmentation problem. CSSD was
used as the feature extraction method for both windowed
and HSMM. The HSMM was given a window range of
150 to 800 for each dataset, and the windowed method was
100 samples wide. OHSMM made use of the online HSMM
algorithm described earlier to perform the classifications.

The accuracy was calculated on each time point to give
an overall accuracy. The HSMM consistently outperformed
the windowed method. The OHSMM had a very similar set
of results to the HSMM, being equal or slightly worse in
all cases. One thing that was noted was that the HSMM
had a smoother output when compared with the Windowed
method.

It was noted in initial tests that the HSMM appeared to
classify very slowly, especially compared to the windowed
method. It makes sense that HSMM would perform slower
than the windowed method, as it will perform the feature
extraction and classification process classes2 × durations
more times than the windowed method for any given seg-
ment. It will also perform it on significantly larger pieces of
timeseries data.

Fig. 3. Asynchronous Graph

2730

Length Viterbi Time (s) Percent of Real time
200 0.01 0.5
400 0.03 0.8
600 0.74 12.4
800 3.44 42.9
1000 9.50 95.0
1200 16.31 135.9
1400 23.58 153.7
1600 30.90 193.1

TABLE III
SPEED TEST RESULTS

To determine if this would be a problem when attempting
real time classification, the calculation time of the viterbi
algorithm was measured for different segments of data.
The code was written in inline C using the scipy.weave
package[6] and compiled with MinGW g++ compiler. It was
run on a i5-2400 processor. The data used was taken from
the previous experiment.

The length is the number of entries in the data. For
purposes of calculating the real time available it is assumed
to be at 100 hz. The time the viterbi takes is given in
seconds. The percent of real time is the percent of the total
time available to perform the segmentation and classification
that the viterbi consumes. The viterbi begins considerably
faster as less calculation are done when not all durations
are possible. The HSMM is sufficiently fast for segments
up to 10s in length. For longer segments the Online HSMM
to be used in real time in the given setting it needs to be
sped up further. The easiest method for doing this is to
limit the allowable durations so that only the nth duration
is calculated. This will reduce the number of calculation
required to be performed at each time to classes2×durations

n
(i.e. reducing it by a factor of n), at the cost of coarser
segmentation.

An alternate solution is to make use of the highly par-
allelisable nature of the viterbi algorithm and make use of
multiple processors. This could provide the required speed
up, especially given the current trend of increasing the
number of processors of CPUs while not improving the speed
of each individual one.

Fig. 4. Viterbi calculation time per second

V. CONCLUSION

A HSMM approach to segmentation of BCI data was pro-
posed, and found to outperform a standard windowed method
on several artificial and complex datasets. Additionally a
method to use the HSMM Online was given. Finally the
speed problems demonstrated by the Viterbi algorithm were
investigated, and a variety of solutions to compensate for this
were put forward.

REFERENCES

[1] A. Kubler, B. Kotchoubey, J. Kaiser, J R. Wolpaw, and N Birbaumer,
Brain-computer communication: unlocking the locked in, Psychol.
Bull., 127:358-75, 2001.

[2] O. Thomas, P. Sunehag, G. Dror, S. Yun, S. Kim, M. Robards, A.
Smola, D. Green, and P. Saunders, Wearable sensor activity analysis
using semi-Markov models with a grammar, Pervasive and Mobile
Computing, 6:342-50, 2010.

[3] S. Faisan, L. Thoraval, J-P. Armspach, and F. Heitz, Unsupervised
learning and mapping of active brain functional MRI signals based on
hidden semi-Markov event sequence models, IEEE Transactions on
Medical Imaging, 24:263-76, 2010

[4] G. Pfurtscheller, and F. H. L. Da Silva, Event-related eeg/meg syn-
chronization and desynchronization: basic principles, Clinical Neuro-
science , 110:1842-57, 1999

[5] M. Grosse-Wentrup, M. Gramann, and M. Buss, Adaptive spatial filters
with predefined region of interest for EEG based brain computer inter-
faces, Advances in Neural Information Processing Systems ,19:537-44,
2007

[6] E. Jones, T. Oliphant, P. Peterson and Others, SciPy: Open source
scientific tools for Python. ¡http://www.scipy.org/¿, 2001.

[7] J. Muller-Gerking, G. Pfurtscheller, and H. Flyvbjerg, Designing
optimal spatial filters for single-trial eeg classification in movement
tasks. Clinical Neurophysiology, 101:787-798, 1998.

[8] Y. Wang, P. Berg, and M. Scherg, Common spatial subspace decom-
position applied to analysis of brain responses under multiple task
conditions: a simulated study. Clinical Neurophysiology, 110:604-614,
1999

[9] F. Lotte, M. Congedo, A. Lecuyer, F. Lamarche, and B. Arnaldi,
A review of classification algorithms for EEG-based brain-computer
interfaces, J. Neural Eng., 4:R1-R13, 2007.

[10] G. Townsend, B. Graimann, and G. Pfurtscheller, Continuous EEG
Classification During Motor Imagery and Simulation of an Asyn-
chronous BCIs, IEEE Trans on Neural Systems and Rehabilitiation
Engineering, 12:258-265, 2004.

[11] G. Dornhege, B. Blankertz, G. Curio, and K-R. Muller, Boosting
bit rates in non-invasive EEG single-trial classifications by feature
combination and multi-class paradigms. Trans. Biomed. Eng., , 51:993-
1002, 2004.

[12] B. Blankertz, G. Dornhege, M. Krauledat, K-R. Muller, and G. Curio,
The non-invasive Berlin Brain-Computer Inteface: Fast aquisition of
effective performance in untrained subjects. NeuroImage, 37:539-550,
2007.

[13] H.E. Robbins, and S. Monro, A stochastic approximation method.
Annals of Mathematical Statistics, 22:400-407, 1951.

2731

